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ABSTRACT
Traumatic brain injuries (TBIs) in children are a major cause of morbidity and mortality worldwide. Severe
TBIs account for 15,000 admissions annually and a mortality rate of 24% in children in the United States.
The purpose of this article is to explore pathophysiologic events, examine monitoring techniques, and
explain current treatment modalities and nursing care related to caring for children with severe TBI.
The primary injury of a TBI is because of direct trauma from an external force, a penetrating object,
blast waves, or a jolt to the head. Secondary injury occurs because of alterations in cerebral blood flow,
and the development of cerebral edema leads to necrotic and apoptotic cellular death after TBI.
Monitoring focuses on intracranial pressure, cerebral oxygenation, cerebral edema, and cerebrovascular
injuries. If abnormalities are identified, treatments are available to manage the negative effects caused to
the cerebral tissue. The mainstay treatments are hyperosmolar therapy; temperature control; cerebrospinal
fluid drainage; barbiturate therapy; decompressive craniectomy; analgesia, sedation, and neuromuscular
blockade; and antiseizure prophylaxis.
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T raumatic brain injuries (TBIs) in children are
a major cause of morbidity and mortality world-
wide (Bramlett & Dietrich, 2004; Centers for

Disease Control and Prevention, 2010; Feigin et al.,
2013; Shao et al., 2012). TBIs are an insult to the brain
because of direct trauma from an external force, a
penetrating object, blast waves, or a jolt to the head
(Faul, Xu, Wald, & Coronado, 2010; Klimo, Ragel,
Scott, & McCafferty, 2010). In the United States,
motor vehicle collisions and falls are the most fre-
quent precipitating events resulting in over 500,000
pediatric TBIs that lead to hospitalization and deaths
each year (Faul et al., 2010). Severe TBIs account for
15,000 admissions annually and a mortality rate of
24% in children in the United States (Piatt & Neff,
2012). Severe pediatric TBIs are defined as children
less than 18 years old with a Glasgow Coma Scale
(GCS) score of 3Y8 (Adelson et al., 2003). An ap-
preciation of the pathophysiologic effects of this in-
jury allows nurses to understand the role of key
therapeutic management principles. The purpose of
this article is to explore pathophysiologic events,
examine monitoring techniques, and explain current

treatment modalities and management related to
caring for children with severe TBI.

Pathophysiology
By understanding the pathophysiology associated with
a TBI, pediatric nurses may be better able to manage
and prevent injury progression. Injury progression
may be subdivided into primary and secondary in-
juries, which are associated with major pathways of
dysfunction in TBI.

Primary Injury
Primary injury comes about because of linear and
rotational forces to brain tissue at the time of impact.
Linear forces from acceleration trauma that transverse
the skull result in coup and contracoup contusions
(Hirsch & Kaufman, 1975). Coup contusions occur
when the brain impacts the side of the skull, whereas
contracoup contusions occur when the brain hits the
side of the skull and then bounces back to the other
side of the skull (Stewart, 1944). The two most com-
mon types of hemorrhages after TBI in children are
epidural and subdural (Case, 2008; Jamous et al.,
2009). Epidural hemorrhages are often associated with
skull fractures because the skull fragments cause lac-
eration of an artery leading to accumulation of blood
between the skull and the dura (Black, 1956). Sub-
dural hemorrhages are a result from the rupture of one
or more of the bridging veins within the space be-
tween the dura mater and arachnoid membrane. The
clinical presentation evolves over days to weeks both
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in the physical skills and electroencephalographic
(EEG) changes (Cohn, 1948).

Rotational forces are a result of the brain moving
at a different angular velocity than the skull because
the head is not held in a fixed position during the
injury (Holbourn & Edin, 1943). Rotational forces can
lead to shearing and twisting injury in critical areas
of the brain and are often manifested clinically as
concussions and diffuse axonal injury (Blumbergs
et al., 1994; Mihalik et al., 2010; Moen et al., 2012).
Concussions are a traumatic injury to the head that
can result in a loss of consciousness and traumatic
amnesia (Ward, 1964). However, diagnostic imaging
does not show any damage to the brain despite symp-
tom continuation for several weeks postinjury (Eisenberg,
Meehan, & Mannix, 2014). Diffuse axonal injury is
characterized by widespread damage to axons from
the force and shearing sustained during the primary
injury (Adams, Graham, Scott, Parker, & Doyle, 1980).
These injuries and outcomes vary from child to child
based on several factors because the primary injury
plays a major part in the extent of the injury (Kondo
et al., 2010; Moen et al., 2012).

Anatomic considerations confound the primary in-
jury process for young children with TBI when com-
pared with adults. Comparedwith adults, young children
have proportionately large, heavy heads; weaker cer-
vical ligaments and muscles; and thin, pliable skulls;
all of which can result in increased severity of injury
(Calder, Hill, & Scholtz, 1984). When young children
sustain a blunt injury to the head, their large, heavy
heads and weaker cervical ligaments and muscles cause
the mechanical force to be transferred to the cer-
vical spine (C-spine) region, which can result in cer-
vical spinal fractures from the occiput to C2 and
cervical cord damage (Nitecki & Moir, 1994). In
children aged G8 years, the fulcrum of movement
is located at C2YC3 compared with C5YC6 in adults,
which may explain why children experience cervical
fractures in different locations than adults (Finch &
Barnes, 1998). The thin, pliable skull provides less
protection to the underlying brain, leaving it more
vulnerable to shearing from linear and rotational
forces (Leventhal, 1960). The long-term clinical im-
pact of the initial structural changes in the brain from
the primary injury is difficult to discern because the
early effects of the primary injury are quickly com-
pounded by the secondary injury, which activates
complex biomolecular and physiologic reactions.

Secondary Injury
Secondary injury occurs because of alterations in
cerebral blood flow (CBF) and the development of
cerebral edema, which may lead to neuronal cellular
death. If the CBF and cerebral metabolism continues

to be compromised (Kilbaugh et al., 2011; Mandera,
Larysz, &Wojtacha, 2002; Stiefel, Tomita, & Marmarou,
2005) additional cellular damage and death will occur
and more toxic substances will be released (Pasvogel,
Miketova, & Moore, 2010; Pun, Lu, & Moochhala,
2009). The longer the secondary injury phase contin-
ues, the more likely the child will sustain long-term
disabilities (Casey, McKenna, Fiskum, Saraswati, &
Robertson, 2008).

Cerebral Blood Flow
CBF is the mechanism that supplies the cerebral tis-
sue with oxygenated blood. To maintain a consistent
cerebral flood flow, cerebral arteries and arterioles dilate
and contract in response to hemodynamic changes
called cerebral autoregulation (Hekmatpanah, 1970).
During the first 0Y9 days, cerebral autoregulation is
often impaired after a TBI; this results in CBF becoming
dependent on cerebral perfusion pressures (CPPs) and
intracranial pressure (ICP; Tontisirin et al., 2007). An
increased risk for impaired autoregulation has been
associated with increased ICP, hyperemia, decreased
hematocrit, decreased arterial oxygen (PaO2), increased
cerebral lesion size, and age of less than 4 years
(Freeman, Udomphorn, Armstead, Fisk, & Vavilala,
2008; Tontisirin et al., 2007). Clinically, children with
impaired cerebral autoregulation have increased odds
of poor outcomes (e.g., functional impairment, veg-
etative state, or death; Tontisirin et al., 2007).

Cerebral Metabolism
Cerebral metabolism is affected after a severe TBI
because the tissue is deprived of glucose and oxygen
forcing cells into anaerobic metabolism (Holbach,
Schröder, & Köster, 1972). Anaerobic metabolism
produces less energy and increases lactate produc-
tion, ultimately making it difficult for cells to main-
tain normal functional processes. Failure to maintain
cellular functioning because of lack of energy creates
an acidotic environment, which leads to serious
consequences (Bouzat et al., 2014). When the
sodium/potassium (Na/K) pumps fail, an excessive
influx of the positively charged sodium ions preci-
pitate massive depolarization of neurons. This depo-
larization leads to the release of glutamate, an
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excitatory neurotransmitter that leads to excitotoxic-
ity, as well causing more damage (Chamoun, Suki,
Gopinath, Goodman, & Robertson, 2010).

The excess extracellular glutamate activates cell
receptors that allow a massive influx of calcium and
sodium into the cells, leading to clinically significant
consequences. The increased intracellular calcium leads
to (a) activation of the nitric oxide synthetase (NO)
leading to cerebral edema and ischemia; (b) activation
of casplases (destructive enzymes) that damage the
DNA of the cell, leading to apoptosis; (c) activation
of the proteases family of calpains, which cause the
breakdown of the neuronal cytoskeleton leading to
the loss of structural integrity of the neuron; (d)
damage to the Na/K pump, leading to an influx of
additional sodium followed by water with resultant
cerebral edema; and (e) mitochondrial injury lead-
ing to reactive oxygen species generation, microvas-
cular damage, and cerebral edema (Huh, Franklin,
Widing, & Raghupathi, 2006; Robertson, Bucci, &
Fiskum, 2004; Robertson, Saraswati, & Fiskum, 2007).
The influx of sodium can lead to increased perme-
ability of the calcium ion channels resulting in cell
swelling and/or neuronal death (Staal et al., 2010).
Glutamate, calcium, and sodium can cause signifi-
cant damage to the structures and functions through-
out the nervous system.

If cerebral blood flow has been disrupted for a period,
reperfusion injury may occur when adequate blood
flow is restored. The areas of ischemia will likely
show the sequelae associated with poor cerebral blood
flow (Robertson, Scafidi, McKenna, & Fiskum, 2009).
Upon restoration of perfusion, leukocytes attempt to
repair the ischemic tissue, which leads to further
generation of free radicals. The free radicals likely
play a role in cellular death during reperfusion in-
jury (Reddy & Labhasetwar, 2009).

BloodYBrain Barrier and Edema
The bloodYbrain barrier (BBB) is responsible for re-
stricting movement of certain molecules, including
medications and white blood cells, into the central
nervous system. This barrier consists of astrocyte
endfeet, brain microvascular endothelial cells, and
capillary basement membrane. Shearing damage sus-
tained in the primary injury can cause structural damage
to the BBB increasing the membrane permeability.
During the secondary injury phase, research suggests
that excitotoxicity from the excess glutamate leads
to an influx of calcium and sodium into the cells (Pun
et al., 2009).

Brain edema is the increase of fluid in the brain,
which is likely a result of changes in the cellular,
molecular, structural, and functional properties of the

BBB that usually prevent excess fluid from entering
the brain (Unterberg, Stover, Kress, & Kiening,
2004). There are two types of cerebral edema after
TBI: vasogenic (interstitial) and cytotoxic (intracel-
lular; Greve & Zink, 2009). Vasogenic cerebral edema
is a result of the increased permeability of the BBB
because of necrosis of capillary endothelial cells
(Unterberg et al., 2004). The damage to capillary
endothelial cells allows the leakage of proteins into
the interstitial fluid creating an osmotic gradient. This
osmotic gradient allows excess water and proteins to
accumulate in the interstitial space of the brain (Donkin
& Vink, 2010).

Cytotoxic edema occurs because of energy failure
and the inability to maintain the Na/K pump. The in-
flux of sodium ions into the intracellular space is
followed by an influx of water from the extracellular
space in an attempt to create homeostasis (Donkin &
Vink, 2010). The interstitial space within the brain is
reduced in cytotoxic edema because the cells swell
(Unterberg et al., 2004).

Importantly, both types of edema may lead to in-
creased ICP because of the brain’s inability to com-
pensate for the increased volume of the brain tissues
or increased volume in the interstitial space of the brain.
On the basis of the MonroYKellie hypothesis, the brain
will initially attempt to compensate for the edema by
displacing cerebrospinal fluid (CSF) into the spinal
canal and venous blood into the jugular veins; however,
if these mechanisms fail to decrease the volume within
the cranial cavity, the ICP will increase (Weed, 1929).
The cerebral edema can bemonitored clinically through
ICPs, visualized on radiographic images, and observed
through changes in the child’s behavior.

Necrosis and Apoptosis
Primary and secondary injuries can lead to two types
of cellular death: necrosis and apoptosis. Necrosis is
cellular death that occurs in conditions of very severe
hypoxia and ischemia because of lack of oxygen
(Johnston et al., 2009). Pathologically, the cell mem-
brane ruptures, the mitochondria are severely dam-
aged, and all the toxic contents (e.g., phospholipases,
proteases, and lipid peroxidase) are leaked into the ex-
tracellular space leading to inflammation (MiDambres
et al., 2008). The leakage from the cells can activate
the inflammatory cascade and lead to additional con-
sequences. This is why apoptosis would be the pre-
ferred method of cellular death.

If the insult is less severe, the cells may recover
or may progress to programmed cell death, known
as apoptosis (Johnston et al., 2009). Apoptosis is a
caspase-dependent pathway that ultimately results in
cell shrinkage and general preservation of the cellular
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membranes without associated inflammation that may
begin on the first day of injury (MiDambres et al., 2008;
Pasvogel et al., 2010). Both necrosis and apoptosis can
lead to clinical changes such as decreased cognitive
and physical disabilities because of losses in neurons
through cellular death (Brown, Elovic, Kothari, Flanagan,
&Kwasnica, 2008). In an attempt to mitigate the dam-
age sustained after severe TBI, advanced monitoring
techniques are utilized to monitor the progression of
the secondary injury or to evaluate the responsiveness
to treatments.

Assessing and Monitoring Children With
Severe TBI
Initial Assessment and Stabilization
In the emergency department, the specially trained
trauma team is responsible for the initial assessment
and stabilization of a child with a severe TBI. The
primary assessment begins with addressing all poten-
tial life-threatening injuries (e.g., tension pneumotho-
rax) including the head injury. The teammust determine
whether the child has a patent airway, can maintain an
adequate respiratory drive (breathing), and has ade-
quate circulation and initial neurologic status (dis-
ability). This primary assessment is often referred to as
the ABCDs (Emergency Nurses Association, 2007).

The assessment of the airway is used to determine
if air can pass through without obstruction to the lungs
(McFadyen, Ramaiah,&Bhananker, 2012). The airway
must be cleared of any debris by suctioning or other
methods, if obstructed. The team may choose to elicit
a gag reflex with the suction catheter while suctioning
the child to determine if the child is able tomanage his
or her oral secretions and protect his or her airway
frompotential aspiration of stomach contents (Marcoux,
2005). If the child has a depressed level of conscious-
ness, the child may be unable to protect his or her
airway, and endotracheal intubation may be necessary,
while maintaining inline stabilization of the C-spine
(McFadyen et al., 2012).

The assessment of breathing is used to determine
which interventions are necessary to help the child main-
tain adequate oxygenation and ventilation (McFadyen
et al., 2012). Children who present with abnormal
breathing patterns (e.g., central neurogenic hyperven-
tilation, cluster breathing, ataxic breathing, and apnea)
may have sustained a brainstem lesion/injury or a
C-spine injury with resultant phrenic nerve failure
requiring initial respiratory support (e.g., endotracheal
intubation and placement on a ventilator; Easter, Barkin,
Rosen, &Ban, 2011; Marcoux, 2005). C-spine precau-
tions (e.g., rigid cervical collar, log roll turning method)
should be maintained because head injuries are asso-
ciated with spinal cord injuries (Easter et al., 2011).
Maintaining systemic oxygenation and ventilation

parameters of PaO2 301Y500 mm Hg (40Y67 kPa)
and PaCO2 of 36Y45 mm Hg (5Y6 kPa) are as-
sociated with higher rates of survival for children
(Ramaiah et al., 2013).

Initial assessment and stabilization of circulation
begins with checking for a pulse and beginning car-
diopulmonary resuscitation, if necessary (Chameides
& Ralston, 2011). Stopping any external hemorrhage
is also critical to minimize blood loss. Maintaining
adequate circulation in children with head injuries is
important because CPP depends on the ICP and mean
arterial pressure (MAP; Hekmatpanah, 1970). The MAP
is a reflection of the average arterial system pressure
during a cardiac cycle and can be calculated based on
this equation: MAP = (1/3 systolic BP) + (2/3 diastolic
BP). To ensure adequate perfusion, in the guidelines
from Pediatric Advanced Life Support, the recom-
mendation is to maintain a pediatric (1Y10 years old)
systolic blood pressure 9 70 mm Hg + (2 � age in
years) to avoid a hypotensive state (Kleinman et al.,
2010; see Table 1 for recommended MAPS based on
age; Hazinski, 2013; Top et al., 2011).

The initial neurological status (disability) is as-
sessed through the pediatric GCS, pupil response, and
overall responsiveness (Emergency Nurses Associa-
tion, 2007). The pediatric GCS is a modified version
of the adult GCS that accounts for the changing de-
velopmental status of children (scored 3Y15). If the
child has an initial pediatric GCS G 8 (classified as a
severe head injury) or is unarousable, the trauma/
emergency team considers emergent endotracheal
intubation and placement on a ventilator (Falk, 2012;
Marcoux, 2005). The initial assessment and stabili-
zation should take less than 10 minutes.

Neurological Assessment
Assessing Cerebral Edema and Posttraumatic
Cerebrovascular Injuries
Cranial imaging through computed tomography (CT)
and magnetic resonance imaging (MRI) are used to

TABLE 1. Recommended Average Mean
Arterial Pressures (MAPs) by Age

Age in Years MAP (mm Hg)

1Y2 50Y70

3Y4 60Y75

5Y6 65Y75

7Y8 70Y75

9Y10 70Y75

11Y12 70Y80

13Y14 80Y90

Hazinski, 2013; Top, Tasker, & Ince, 2011.
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identify cerebral edema and cerebrovascular injuries.
This information is used to determine what neuro-
surgical interventions are necessary and to provide
prognostic information about long-term developmen-
tal outcomes (Beauchamp et al., 2011; Suskauer &
Huisman, 2009). Cranial CT scans are useful in identi-
fying large hematomas, midline shift, skull fractures,
excess CSF accumulation in the ventricles, cerebral
edema, and brain herniation (Steinborn et al., 2010;
Suskauer &Huisman, 2009). The results of the initial
CT scans are used to determine if emergent neurosur-
gical interventions (e.g., decompression craniotomy) are
needed (Suskauer & Huisman, 2009). The major ad-
vantage of using CT scan is that the scan takes less
than 10 minutes to perform and the child is easily
accessible to the nurse throughout the scan. Themajor
disadvantage of using CT is the potential for exposing
the child to ionizing radiation (Duhaime, Holshouser,
Hunter, & Tong, 2012).

Empirical evidence suggests that diagnostic radia-
tion both in utero and in childhood is associated with
an increased risk of childhood cancer (International
Agency for Research on Cancer, 2012). The overall
cancer incidence is 24% greater for those exposed to
CT scans than for those who are not exposed in
childhood (Mathews et al., 2013). Children needing a
CT scan of the brain are at a greater risk of exposure
because the skull is less dense than adult skulls and
offer less protection to the underlying cerebral tis-
sue (Morton et al., 2013). The American College of
Radiology and the Image Gently campaign have made
specific suggestions for radiologists, radiologic tech-
nologists, and medical physicist to lower CT doses
of radiation and use alternative testing when possible
(Strauss et al., 2010). Nurses can assist the clinicians
in meeting these new goals by ensuring that only areas
that need to be scanned are scanned.

MRI scans are helpful in identifying extra-axial
hemorrhage (e.g., subdural hemorrhage) and early areas
of ischemia and detecting edema in subacute moderate-
to-severe injury (Bigler et al., 2013; Hunter, Wilde,
Tong, & Holshouser, 2012). The major disadvantage
of using MRI scan is that it takes longer than a CT
scan and the equipment taken into the room to monitor
the child must be MRI safe. The nurse needs to review
MRI safety with parents whomay accompany the child
into the scan, and the child or parent does not have any
MR-contraindicated implantable devices (e.g., deep
brain stimulators; Duhaime et al., 2012).

Assessing ICPs
The pressure in the cranial vault is made up of the
CSF, blood, and brain. According to the MonroY
Kellie hypothesis, ICP is relatively constant because

the cranial cavity represents a fixed volume (Weed,
1929). If an increase in the volume of CSF, blood, or
brain compartments occurs, the brain will compen-
sate initially by displacing one of the two other com-
partments. However, when displacement does not
decrease the pressure within the cranial cavity, the
ICP increases. In the case of TBI, one or more of
these components can become increased, leading to
increased ICP (Weed, 1929).

ICP can be assessed through clinical observations
(e.g., headache, irritability), noninvasive examina-
tions (e.g., transcranial Doppler [TCD]), and direct
invasive measures (e.g., intraparenchymal [IP] mon-
itors). Careful and frequent assessment of children
with severe TBI may allow the clinician to observe and
manage the signs and symptoms of early increased ICP
before the child progresses to the late signs. Early signs
of increased ICP may be subtle such as irritability and
cranial nerve dysfunction. The most ominous late sign
of increased ICP is Cushing’s triad. Cushing’s triad is
the result of cerebral ischemia. Clinically, it manifests as
increased systolic blood pressure (also widened pulse
pressure) to increase cerebral perfusion, bradycardia
because of a vagal response triggered by the cardiac
baroreceptors, and abnormal or irregular respirations
(Cushing, 1903; see Table 2 for signs and symptoms
of increasing ICP).

TCD is a noninvasive examination of the blood
flow velocity of the middle cerebral arteries through
the transtemporal window (temple anterior to the ear)
to determine cerebral hemodynamics and indirectly
assess intracranial hypertension (Trabold, Meyer, Blanot,
Carli, & Orliaguet, 2004; Verlhac, 2011). The use of
TCD to evaluate increased ICP is limited in children
(Melo et al., 2011; Meyer et al., 2005) and has been
used to evaluate cerebral vasospasms (Trabold et al.,
2004) and cerebral autoregulation (Vavilala et al., 2004).
This noninvasive method may be useful as screening
tool in early resuscitation because it can be used in
children with coagulation disorders and those with
critical injuries before CT scan (Melo et al., 2011).
Nursing responsibilities for the procedure include posi-
tioning the child supine throughout the procedure.

The two most common types of direct invasive in-
tracranial monitoring devices utilized for monitoring in
pediatric TBI are the external ventricular device (EVD)
and IPmonitors (Wiegand & Richards, 2007). The EVD
is the gold standard for measuring ICP. An EVD is a
fluid-coupled device with the catheter placed directly
in the lateral ventricles that allows access to CSF,
making it ideal for drainage of CSF for increased ICP
and sampling of CSF (Padayachy, Figaji, & Bullock,
2010). Nursing considerations when caring for a child
with an EVD involve assessing for complications;
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monitoring for infection including systemic tempera-
ture (Geyer, Meller, Kulpan, & Mowery, 2013); asses-
sing the dressing for drainage (Ngo et al., 2009);
assessing CSF drainage for color, clarity, and amount
(Geyer et al., 2013); and monitoring for signs and
symptoms of overdrainage of CSF (e.g., dehydration,
hyponatremia) and underdrainage of CSF (Ngo et al.,
2009). Nurses must also ensure that, each time the
child is repositioned, the EVD is leveledwith the foramen
of Monro (external auditory meatus) at the prescribed
level (Geyer et al., 2013).

IP devices such as the Codman microsensor
(Codman, Raynham, MA) and the Camino (Integra
Neurosciences, Plansboro, NJ) are also utilized to di-
rectly monitor ICP. Generally, the transducer/catheter
is placed within the subarachnoid space and then is
secured to the scalp (American Association of Neuro-
science Nurses, 2011). During the insertion process,
the ICP monitor and the intracranial transducers are
zeroed and do not require further zeroing (Marcoux,
2005). The extracranial transducers are recalibrated
per institutional protocol (usually every 12 hours).
The nursing responsibilities involve monitoring for
complications associated with IP devices including
assessing for hemorrhage and fractures and monitor-
ing for infection (Anderson et al., 2004). With both
the EVD and IP monitor, the nurse must also try to

keep the child from removing the device and pulling
the equipment.

When ICP monitors are available, CPP can be
calculated by the following equation: CPP = MAP Y
ICP. CPP represents an indirect measure of cerebral
blood flow. The ICP should be treated to maintain
adequate CPP between 40 and 50mmHg for children
(Kochanek et al., 2012).

Assessing Cerebral Oxygenation
The main methods of measuring alterations in cerebral
oxygenation are jugular venous oxygen saturation
(SjvO2), brain tissue oxygen partial pressure (PbtO2),
and near-infrared spectroscopy (NIRS). SjvO2 mea-
sures the balance of global cerebral oxygen delivery
and the rate of cerebral metabolic oxygen consump-
tion (Pérez et al., 2003). The catheter to measure
SjvO2 is positioned in the bulb of the internal jugular
vein (Blissitt, 2009) with the tip of the catheter above
the level of C1/C2 disk to minimize contamination
from the facial vein (Rohlwink & Figaji, 2010). Gen-
erally, normal values of SjvO2 range from 55% to 75%
(Pérez et al., 2003). Decreased SjvO2 can occur with
decreased systemic oxygen supply, local or systemic
hypoperfusion, and increased cerebral metabolism or
oxygen extraction (e.g., pyrexia and seizures). Chil-
dren with severe TBI who experienced two or more
SjvO2 measurements e 55% had an increased risk of
poor neurologic outcome (severe disability, coma or
persistent vegetative state, or brain death; Pérez et al.,
2003). Increased SjvO2 may occur with decreased cere-
bral metabolism, increased systemic oxygen supply,
restricted oxygen diffusion, and hyperemia (Rohlwink
& Figaji, 2010). The limitation to monitoring SjvO2

is the inability to measure focal ischemia because the
measurement only provides an assessment of global
cerebral oxygenation (Rohlwink & Figaji, 2010).

Careful assessment andmanagement of SjvO2 cath-
eters is necessary to ensure accurate results and pre-
vent complications. When sampling blood from the
catheter, withdraw at a rate of 2 milliliters per minute
to decrease the risk of extracerebral contamination.
Recalibrate in vivo using a blood sample at least every
24 hours. Maintaining a pressurized saline bag with con-
tinuous flush may prevent clots and facilitate proper
functioning of the catheter (Blissitt, 2009). Nurses need
to monitor for complications that can occur during
insertion or while the catheter is indwelling: carotid
artery puncture, hematoma formation, infection, throm-
bosis, and raised ICP (Rohlwink & Figaji, 2010).

Brain tissue oxygenation (PbtO2) monitors (e.g.,
Licox [Integra Neurosciences, Plainsboro, NJ]) pro-
vide an estimate of the balance between cellular
oxygen consumption and regional oxygen supply

TABLE 2. Signs and Symptoms of
Increasing Intracranial Pressure

Early Signs and Symptoms

Headache

Vomiting

Change in alertness

Irritability

Decreased eye contact

Cranial nerve dysfunction

Seizures

Decrease in Glasgow Coma Scale score

Late Signs and Symptoms

Further deterioration of consciousness

Bulging fontanel

Decreased spontaneous movement

Posturing

Papilledema

Pupil dilation with decreased or no response to light

Increased blood pressure

Irregular respirations

Cushing’s triad

Marcoux, 2005.
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(Purins, Lewén, Hillered, Howells, & Enblad, 2014).
PbtO2 is thought to be reflective of CBF, arterial
oxygen tension, or a product of CBF and arteriove-
nous tension difference in oxygen tension (De Georgia,
2014; Rosenthal et al., 2008). Normal parameters for
PbtO2 values are 930 mm Hg (Maloney-Wilensky &
Le Roux, 2010; Stippler et al., 2012). PbtO2 values
G 20mmHg are usually considered to be approaching
ischemia (De Georgia, 2014). When PbtO2 values
are between 0 and 5 mm Hg for greater than 1 hour,
there is a high risk of severe disability or death (Figaji
et al., 2009; Figaji & Kent, 2010). Leading causes of
decreased PbtO2 levels include decreased arterial par-
tial pressure of oxygen, poor cerebral blood flow,
tissue barriers to diffusion (e.g., cytotoxic edema), in-
creased arterial CO2, increased ICP, and low CPP that
can decrease PbtO2 and lead to ischemia (Rohlwink
et al., 2012).

The Licox system, the major PbtO2 monitor utilized,
can also monitor brain temperature and ICP simulta-
neously by probes inserted through a triple-lumen bolt
(Stevens, 2004). The triple-lumen bolt is usually placed
in the frontal lobe in noncontused tissue identified
on CT scan (Narotam, Burjonrappa, Raynor, Rao,
& Taylon, 2006; Stiefel et al., 2006; Ushewokunze &
Sgouros, 2009) and at least 14 millimeters from other
probes (e.g. EVD; Stevens, 2004). Because of local-
ized microtrauma at the insertion site, the PbtO2 sen-
sor readings are not considered accurate for the first
30Y120 minutes after insertion. The current recommen-
dation is to maintain PbtO2 Q 10 mm Hg (Kochanek
et al., 2012). After insertion, the nurse must ensure
the Licox cables are secured per institutional pro-
tocol, usually at two points of tensions, one directly
on the patient’s head where the bolt is anchored to the
skin and the other at the patient’s shoulder (Wilensky
et al., 2005). The PbtO2 monitor does not require
daily recalibration (Stevens, 2004). The dressing at the
site is changed every 48 hours or when saturated and
replacedwith a dry, sterile, occlusive dressing (Wilensky
et al., 2005). The nurse also needs to monitor for pos-
sible complications associated with PbtO2 monitors:
infection (Stiefel et al., 2006), hemorrhage (Stiefel et al.,
2006), and catheter dislodgement (Stevens, 2004).

NIRS is a noninvasive measure of regional oxygen
saturation (rSO2) that provides continuous measure-
ments. This measurement describes the balance of
oxygen supply and oxygen demand of the regional
cerebral tissue (Drayna, Abramo, & Estrada, 2011).
The normal parameter of rSO2 for children is about
70% (Yaron et al., 2003; Yoxall, Weindling, Dawani,
& Peart, 1995). Preliminary data from 30 children
suggest that cerebral rSO2 is impacted by changes in
end-tidal CO2, heart rate, and hematocrit but is not
effected by changes in ICP or CPP (Zuluaga, Esch,

Cvijanovich, Gupta, & McQuillen, 2010). NIRS has
not been used extensively in childrenwith TBI (Amigoni
et al., 2011).

Current Treatments for Children With
Severe TBI
Many of the treatments for severe TBI are deter-
mined based on assessment findings of increased ICP,
impaired cerebral oxygenation, cerebral edema, and
cerebrovascular injuries. The treatments aim to restore
adequate CBF and cerebral metabolism, reduce cere-
bral edema, and minimize cellular death to ameliorate
secondary injury. The ‘‘Guidelines for theAcuteMedical
Management of Severe Traumatic Brain Injury in
Infants, Children, and Adolescents’’ (Kochanek et al.,
2012) provides treatment-recommendation-based
levels 1, 2, and 3. The treatment-recommendation-
based levels are determined by the strength of the
study designs available for each treatment, with level
1 having the strongest evidence and level 3 having the
least evidence (Kochanek et al., 2012; see Table 3 for
a summary of the evidence for treatment of severe
TBI). The main treatment modalities include hypero-
smolar therapy, temperature control, consideration of
etomidate to control severe increased ICP and thio-
pental to control ICP, and consideration of prophylactic
treatment to reduce incidence of early posttraumatic
seizures (PTSs).

ICP monitoring is a mainstay in the treatment of
severe TBI (Exo et al., 2011), with most guidelines
considering values of 920Y25 mm Hg requiring
treatment (Kochanek et al., 2012). Current research
also suggests maintaining PbtO2 at a minimum of
10 mm Hg (Kochanek et al., 2012; Narotam et al.,
2006). When the monitoring parameters are not within
the acceptable ranges, treatments are necessary to
prevent further injury to the cerebral tissue.

Hyperosmolar Therapy
Hyperosmolar therapy creates an increased serum
osmolality by pulling fluid from interstitial space back
into the cerebral vessel and into systemic circula-
tion, lowering the volume in the cranial vault (Knapp,
2005). Hyperosmolar therapy with 3% hypertonic
saline solution should be considered for intracranial
hypertension because it alters cerebral volume (Weed,
1929). The effective acute dose of hypertonic saline
is 6.5Y10 milliliters per kilogram and the continuous
dose is 0.1milliliters to 1.0 milliliters per kilogram per
hour to maintain ICP G 20 mm Hg (Kochanek et al.,
2012). Nurses need to monitor serum osmolality
every 4Y6 hours to ensure it is maintained below
360 milliosmole per liter for 3% hypertonic saline
(Kochanek et al., 2012).
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Temperature Control
Systemic hyperthermia from inflammation after TBI
can lead to additional secondary injury because pyrexia
exacerbates many of the biochemical reactions (e.g.,
excitotoxicity, production of reactive oxygen species;
Puccio et al., 2009). Animal studies suggest that hy-
perthermia is associated with poor outcomes and
should be avoided, and thus, maintaining normother-
mia is recommended in severe TBI (Kochanek et al.,
2012). Nurses should monitor the child’s tempera-
ture and adjust the environment to ensure the child is
not hyperthermic, also alerting the healthcare team if
the child becomes hyperthermic.

CSF Drainage
Drainage of CSF is to reduce the volume of intra-
cranial fluid, which in turn decreases the volume within
the cranial vault and thus reduces the ICP. Drainage of
CSF can occur through the EVD (Kochanek et al.,
2012). The EVD can also be used for monitoring ICP,
which is helpful in the management of children with
severe TBI. Normal output of CSF is 3Y5 milliliters
per hour for infants, 5Y10 milliliters per hour for
children, and 10Y15 milliliters per hour for adoles-
cents (Vernon-Levett, 2006).

Barbiturate Therapy
Very limited evidence exists for the use of barbitu-
rates in severe TBI. The use of barbiturates may be
necessary, when CSF drainage, hyperosmolar ther-
apy, and sedation and analgesia have not effectively
lowered the ICP to maintain an adequate CPP (Marshall

et al., 2010). Barbiturates decrease ICP by suppressing
metabolism and altering vascular tone (Kochanek
et al., 2012). Pentobarbital or thiopental are adminis-
tered as themedications of choice (Glick, Ksendzovsky,
Greesh, & Raksin, 2011; Marshall et al., 2010; Mellion
et al., 2013). Nurses generally monitor patients with
TBI who receive barbiturates for medically induced
comas closely. Vital signs are measured at least hourly,
if not more frequently, depending on the child’s condi-
tion (Mazzola & Adelson, 2002). Continuous arterial
blood pressure monitoring and cardiovascular sup-
port to maintain adequate CPP is usually required
(Kochanek et al., 2012). Nurses also monitor for elec-
trographic burst suppression, which is evaluated
through the use of continuous EEG (Mellion et al.,
2013). These children require critical care by vigilant
specially trained nurses.

Decompressive Craniectomy
Decompressive craniectomy (DC) is a surgical proce-
dure to remove a portion of the skull, debride the
necrotic tissue, and allow unimpeded swelling of the
brain and improved CBF (Morrow & Pearson, 2010).
DCmay be considered for children showing early signs
of neurologic deterioration or herniation in the early
stages of ICP or evaluation of a mass lesion refractory
to medical treatment (Bowers, Riva-Cambrin, Hertzler,
& Walker, 2013). The outcomes of children who un-
dergo DC are generally positive; however, few studies
exist examining pediatric patients (Thomale, Graetz,
Vajkoczy, & Sarrafzadeh, 2010; Weintraub, Williams,
& Jane, 2012). In studies with children who underwent

TABLE 3. Treatments for Children With Severe TBI

Treatment
Level of
Evidence Recommendation

Hyperosmolar therapy 2 Hypertonic saline acute bolus dose of 6.5Y10 ml/kg for increased ICP.

3 Continuous 3% saline dose of 0.1Y1.0 ml/kg/hr to maintain ICP G 20 mm Hg
and serum osmolarity G 360 mOsm/l.

Temperature control 3 Avoid hyperthermia.

CSF drainage 3 CSF drainage through an EVD may be considered.

Barbiturates 3 High-dose barbiturate therapy in cases of refractory intracranial hypertension.

Decompressive
craniectomy

3 Consider in early signs of neurologic deterioration or herniation or are
developing intracranial hypertension refractory to medical management
during the early stages of treatment.

Analgesics, sedatives, and
neuromuscular blockade

3 Etomidate may be considered to control severe intracranial hypertension.
Thiopental may be considered to control intracranial hypertension.

Antiseizure prophylaxis 3 Prophylactic treatment with phenytoin may be considered to reduce the
incidence of early PTS.

Note. Adapted from Kochanek et al. (2012). TBI = traumatic brain injury; ICP = intracranial pressure; CSF = cerebrospinal fluid; EVD =
external ventricular device; mOsm = milliosmole; ml = milliliter; kg = kilogram; hr = hour; l = liter; PTS = posttraumatic seizures.
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DC because of sudden increases in ICP, long-term
outcomes showed moderate disability to good recovery
of most of the children (Figaji, Fieggen, & Peter, 2003;
Josan & Sgouros, 2006; Ruf et al., 2003). Currently, a
large international randomized-controlled trial, ‘‘Ran-
domised Evaluation of Surgery with Craniectomy for
Uncontrollable Elevation of Intra-Cranial Pressure
(RESCUEicp),’’ is underway to better understand if DC
is an effective form of treatment for TBIs for indi-
viduals aged 10Y65 years (Bohman & Schuster, 2013;
Hutchinson et al., 2006). Nurses caring for these
children need to monitor for signs and symptoms of
infection (Hockenberry & Wilson, 2007), maintain
precautions to prevent physical pressure around the
area without an intact skull, and assess and manage
pain (Vernon-Levett, 2006).

Analgesia, Sedation, and Neuromuscular
Blockade
The purpose of administering analgesia and sedation
medication is to decrease pain and stress, which increases
cerebralmetabolic demands and increases cerebral blood
volume, in turn raising ICP (Kochanek et al., 2012).
Different analgesics and sedationmedications can affect
the cerebral vasculature, metabolism, autoregulation,
ICP, and CPP. Unfortunately, because most analgesic
and sedation medications have not been evaluated, in
regard to the effect on ICP, they cannot be recommended
as a treatment for intracranial hypertension. Etomidate
and thiopental can be considered to treat intracranial
hypertension. If etomidate is utilized, the risks of ad-
renal suppressionmust be considered (Kochanek et al.,
2012). The use of neuromuscular blockade agents is
mentioned in the guidelines as a consideration, but no
recommendations are offered. Because of the paucity
of evidence, additional medications frequently utilized
in the pediatric intensive care are also reviewed. The
recommendation is to allow the treating clinician to
choose which medication is best for the patient.

Opioids (e.g., morphine, fentanyl), classified as anal-
gesics agents, can directly affect the respiratory cen-
ters in the medulla, leading to a decreased respiratory
rate and subsequent increased PaCO2 (Kilbaugh, Friess,
Raghupathi, &Huh, 2010). The increased PaCO2 can
cause vasodilatation of the cerebral vessels, increase
ICP, and decrease CPP. The nurse should monitor for
common side effects of opioids: constipation, urinary
retention, sedation, nausea, vomiting, respiratory depres-
sion, bradycardia, hypotension, and pruritis (Kilbaugh
et al., 2010).

Analgesia is often administered in conjunction with
sedation. The classification of medications generally
used for sedation is benzodiazepines (e.g., midazolam,
lorazepam, diazepam). Benzodiazepines have several
advantages for children with severe TBI: sedation,

anxiolysis, muscle relaxation, anterograde amnesia,
decreased cerebral metabolic rate, and anticonvulsant
properties (Kilbaugh et al., 2010). However, clinically
important side effects exist that could be detrimental:
decreased blood pressure and depressed ventilation
(Meyer et al., 2010). Initially, nurses should monitor
vital signs each hour or more frequently depending
on the child’s condition and continue to monitor the
child’s pain level (Hockenberry & Wilson, 2007).

Antiseizure Prophylaxis
Prophylactic treatment with phenytoin may be consid-
ered to reduce the incidence of early PTSs (Kochanek
et al., 2012). Early PTSs arewitnessed clinical seizures
or abnormal trace recordings on EEG within the first
7 days after the traumatic event (Arango et al., 2012),
with about 44% of children having at least one seizure
(Arndt et al., 2013). Risk factors associated with any
type of PTS are young age, type of trauma (abusive
head trauma), epidural hematoma (Arango et al., 2012),
and skull fracture (Arndt et al., 2013). Risk factors as-
sociated with subclinical PTS are young age, abusive
head trauma, subdural hematoma, and intra-axial hemor-
rhage (Arndt et al., 2013). Additional research is needed
to guide the treatment of antiseizure prophylaxis.

Conclusion
The pathophysiologic effects of primary and secondary
injuries play a key role in the overall outcomes for chil-
dren with TBI. Trauma prevention is the only way to
combat primary injury. Nurses can help educate parents
and children about seat belt safety, falls preventions, and
bicycle safety. The secondary injury phase that occurs
when a complex biochemical and physiologic process
is activated requires vigilant nursing care. Nurses must
monitor for alterations in arterial oxygenation, cerebral
metabolism, cerebral autoregulation, and cerebral blood
flow through changes in the child’s behavior and highly
technical biometric equipment. The care andmonitoring
of childrenwith severe TBI continues for days to weeks
because the cerebral ischemic leads to increased perme-
ability of the BBB and cellular death. Treatments exist
to combat the effects of the secondary injury, but these
treatments cannot ‘‘cure’’ TBI. The children who sus-
tain a TBImay have no residual impairments, but others
may experience catastrophic social, emotional, cogni-
tive, and functional impairments.
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