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PURPOSE:

To enhance the learner’s competence with knowledge of mesenchymal stem cell (MSC) therapy and delivery

systems in nonhealing wounds.

TARGET AUDIENCE:

This continuing education activity is intended for physicians and nurses with an interest in skin and wound care.

OBJECTIVES:

After participating in this educational activity, the participant should be better able to:

1. Apply knowledge of the physiology of wound healing to the use of MSCs to improve the wound healing process.

2. Analyze research investigating the use of MSC with a variety of delivery systems for enhanced wound healing.
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INTRODUCTION
An estimated 7 million people per year in the United States

are treated for nonhealing or chronic wounds at an annual

cost of $25 billion.1 These wounds, regardless of their etiology,

are characterized by a pathological healing process that is

physiologically impaired at all stages.2 Despite many advances

in wound repair, such as dermal substitute application and

growth factor therapy, chronic wounds still achieve only a

50% healing rate.3,4 As a result, a large segment of this popu-

lation is at risk for infection, sepsis, and amputation, not to

mention the incalculable psychological impact of physical

disfigurement.5 In light of this epidemic, novel therapeutic

modalities are needed in the clinician’s armamentarium to aid

patients with chronic wounds. Stem cell therapy has recently

emerged as a promising therapeutic strategy for nonhealing

wounds. This article will help clinicians to interpret the role of

mesenchymal stem cells (MSCs) in wound healing, as well as

the available and potential delivery systems.

STEM CELLS IN WOUND HEALING
Wound healing requires a tightly orchestrated integration of

cell migration, proliferation, differentiation, extracellular matrix

(ECM) deposition, and angiogenesis.6 In normal circumstances,

this process results in re-epithelialization (ie, a stratified epi-

thelium is laid over a provisional wound bed of collagen-rich

granulation tissue).7 Angiogenesis ensues, which supplies a

self-sustaining vasculature in the newly formed tissue and

promotes its complete closure.8,9 These steps involve multiple

cellular and molecular events, well controlled in acute wound

healing, but dysregulated in nonhealing wounds.10–12 The role

of stem cells as a therapeutic strategy in wound healing is

thought to have multiple applications in all stages of the healing

process from angiogenesis to re-epithelialization.

This literature review aimed to summarize strategies for the

treatment of nonhealing wounds using MSCs, focusing on

delivery system parameters that maximize wound closure.

MEDLINE and PubMed Central were searched for English-

language literature describing human or animal studies pub-

lished between 2000 and 2010. The search utilized the following

keywords in the title or abstract: ‘‘nonhealing wounds’’ or

‘‘chronic wounds’’ or ‘‘wound healing’’ and ‘‘mesenchymal

stem cells’’ or ‘‘stem cells’’ or ‘‘MSC.’’ Studies utilizing non-

MSCs were not included in this review. A total of 7 studies

were identifiedV5 described murine models, and 2 described

human studies.

RESULTS OF LITERATURE REVIEW
Recent studies have shown that the bone marrow–derived stem

cells (BM-SCs), particularly MSCs, contribute significantly to

skin regeneration7,13–15 and its vasculature.16 Furthermore, it has

been suggested that these cells home to tissue shortly after injury

to participate in the repair process.10,17,18 Mesenchymal stem

cells are self-renewing,multipotent, plastic-adherent, fibroblast-

like cells with an ability to differentiate into osteoblasts, adi-

pocytes, and chondroblasts.19 In an effort to categorize the MSC

surface markers, the International Society for Cellular Therapy

proposed the following criteria: (1) greater than 95% of the

population must be positive for CD105, CD73, and CD90; and

(2) greater than 98% must be negative for CD45, CD34, CD14,

CD11b, CD79a, CD19, and HLA-DR.19,20 Mesenchymal stem

cells are most commonly isolated from bone marrow aspirate,

but they are also frequently derived from adipose tissue and a

number of other organs.21,22Multiple studies have demonstrated

that topical application of BM-SCs to cutaneous wounds

promotes their repair in mice10,23–26 and humans.23,27 These
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studies demonstrated that wounds treated with MSCs undergo

accelerated repair as defined by enhanced epithelializa-

tion,10,11,28 granulation tissue formation,28–30 and angiogen-

esis10,11,28 (evidence summarized in Table 1). Adding to their

therapeutic appeal, autologous BM-MSCs are nonimmunogenic

and easily accessible and proliferate rapidly in culture.31 Impor-

tantly, a limitation to the studies described in Table 1 is that none

have been verified in blinded studies.

Table 1.

SUMMARY OF PRECLINICAL DATA

Reference
Stem Cell
Source

Delivery
System Total Cells

Wound
Closure

n
P value
Time

Control
Intervention Other Outcomes

Kim et al,
36

2007

Human

ADSCs

Collagen gel 1 � 10
6

,Wound area

34% T 15%

n = 6

P < .05

t = 7 d

Collagen gel

(vehicle control)

1. ,Time to closure

2. jSecretion:

type I collagen

3. jmRNA: type III

collagen, fibronectin

4. ,mRNA: MMP-1

Sasaki

et al,
11 2008

Mouse

BM-MSCs

(femur, tibia)

Intravenous

(PBS)

1 � 10
6

,Wound area

59.6%

n = 10

P < .05

t = 8 d

PBS (vehicle

control)

None

Javazon

et al,
28 2007

Mouse

BM-MSCs

(femur, tibia)

Topical

(PBS)

7.5 � 10
5

,Wound area

25%–45%

n = n/a

P < .001

t = 7 d

1. Filtered bone

marrow

2. PBS (vehicle

control)

1. jGranulation

tissue

2. jAngiogenesis

Chen et al,
31

2009

Mouse

BM-MSCs

(femur, tibia)

Subcutaneous

(PBS) + topical

basement

membrane

matrix gel

1 � 10
6

,Wound area

20%–40%

n = 21

P < .01

t = 14 d

1. Dermal

fibroblasts

2. Subcutaneous

PBS + topical

basement

membrane matrix

gel (vehicle control)

1. ,Time to closure

2. jCellularity

3. jCell

engraftment

Wu et al,
10

2007

Mouse

BM-MSCs

(femur)

Subcutaneous

(PBS) + topical

basement

membrane

matrix gel

1 � 10
6

,Wound area

20%–40%

n = 17

P < .01

t = 14 d

1. Dermal

fibroblasts

2. Subcutaneous

PBS + topical

basement

membrane matrix

gel (vehicle control)

1. jAngiogenesis

2. jCellularity

3. jCell

engraftment

Falanga

et al,
23 2007

Mouse

BM-MSCs

Fibrin spray 1 � 10
6

,Wound area

20%–40%

n = n/a

P < .01

t = 10 d

Fibrin spray

(vehicle control)

MSCs

engraftment in

blood vessels

Falanga

et al,
23 2007

Human MSCs

(iliac crest)

Fibrin spray 1 � 10
6/cm2

,Wound area

30%–50%

n = 6

P = .0058

t = 20w

Fibrin spray

(vehicle control)

Reduction in

wound area is

dose dependent

(MSCs)

Abbreviations: ADSCs: adipose-derived stem cells; BM-MCSs: bone marrow-derived mesenchymal stem cells; PBS: phosphate-buffered saline.

Most of these studies utilized a variation of the wound model described by Galiano et al.32 Falanga et al23 used an alternate full-thickness tail wound. See references for wound

model details.
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Given MSCs’ therapeutic potential in wound healing and

other clinical arenas, several studies have been undertaken to

evaluate their safety. Ra et al33 observed stable karyotype and

immunophenotype in culture-expanded human MSCs over 12

passages. Furthermore, they observed no adverse effects or

mortality during 13 weeks of observation after infusing SCID

micewith high doses (108 cells/kg bodyweight) of humanMSCs.

The same group undertook a phase 1 clinical trial of 8 pa-

tients with spinal cord injuries in which they administered

high doses (4 � 108 cells) intravenously. During the 3-month

follow-up period, there were no clinically significant adverse

events or complications.33

Mesenchymal stem cells’ multidifferentiation potential and

participation in the neovascularization process have raised

concerns in the literature regarding their tumorigenicity.

Muehlberg et al34 demonstrated that MSCs injected locally and

at distant sites promote progression of existing breast cancer

in mice. That group recently demonstrated, however, that soft-

tissue wounds are able to retain MSCs and do not permit

theirmigration to distant tumor sites; no tumor-promoting effect

was observed.35 Furthermore, Ra et al33 found no evidence of

tumor development during 26 weeks of observation after in-

jecting immunodeficient mice with high doses (2� 108 cells/kg)

of human MSCs.

Results from preclinical in vivo studies demonstrate that

autologous MSCs are safe and effective as treatment for chronic

wounds. Although the bone marrow harvest or liposuction

performed to access MSCs is uncomfortable, patients may elect

to undergo these procedures if they reliably offer relief from a

painful and disfiguring chronic wound. Investigation into alter-

native, less invasive methods of MSC isolation is ongoing, but

the topic is beyond the scope of this discussion.

Ongoing studies of this therapeutic strategy generally seek to

answer 2major questions: (1) Bywhatmechanism do BM-MSCs

promote wound healing? (2) What is the best way to apply the

stem cells to the wound?

MSC MECHANISM OF ACTION
Investigations into the mechanism of stem cell–promoted

wound repair suggest that application of ex vivo expanded

MSCs results in both their differentiation into resident cells and

stimulation of regenerative paracrine signaling.10,20,25 The

relative contributions of these 2 mechanisms, however, remain

to be determined. Mesenchymal stem cells administered to

whole-thickness wounds become locally engrafted and differ-

entiate into various cutaneous phenotypes (keratinocytes,

endothelial cells, pericytes), which results in improved healing.10

At the same time, the mere addition of MSC-conditioned me-

dium yields accelerated wound repair,25,30,36 suggesting that

paracrine signaling is the predominant mechanism by which

these stem cells ameliorate the healing process.20 However,

studies using MSCs for brain and heart repair demonstrated a

direct relationship between delivery method and cell engraft-

ment efficiency.37 Put simply, there is insufficient evidence to

conclude whether cell differentiation or paracrine signaling is

predominantly responsible for enhancing wound healing.

MODALITIES FOR TOPICAL STEM
CELL APPLICATION
Delivering stem cells to the wound remains a formidable tech-

nical challenge. In order to optimize MSCs’ therapeutic po-

tential, the delivery medium should support cell adhesion,

proliferation, migration, and differentiation.38 The hostile non-

healing wound environment, characterized by increased pro-

teolytic activity and chronic inflammation,39 presents additional

challenges to cell viability after delivery. The ideal delivery system

would enable MSCs’ therapeutic mechanism(s), conform to the

irregular shape of the wound, have a simple preparation and

application procedure, and demonstrate a significant cost-

benefit ratio to the patient. The most widely available stem cell

delivery materials are hydrogels, specifically fibrin sealants.

Hydrogels
Hydrogels are 3-dimensional insoluble polymer networks

capable of absorbing and maintaining large amounts of water

or biological fluids many times their solid weights.40 They can

be formulated such that their precursors are injected into the

wound and cross-link under physiological conditions.21 Once

congealed, the hydrogels provide the proper physiomechani-

cal properties to support local tissue. These flowable and in-

jectable in situ gel systems are particularly useful because they

could circumvent the need for surgery.41 Hydrogels fully con-

form to the irregular shapes of wound beds and can also be

engineered to degrade at a rate that is compatible with the

healing process.21 Because they resemble biological tissues,

hydrogels could be formulated to mimic the ECM and have

been rigorously investigated as a potential delivery system for

stem cell therapy. Commercially available fibrin sealants have

thus far been the most widely used hydrogel technology.

Fibrin Sealants
Fibrin sealants that are currently approved by the Food and

Drug Administration for surgical hemostasis have been used

off-label for the delivery of keratinocytes42 and fibroblasts43 in

wound healing. They have been extensively studied as a deli-

very system for MSCs (preclinical observations summarized

in Table 2). Commercially available fibrin sealants consist of

2 separate chambers of fibrinogen and thrombin, which when
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combined, mimic the coagulation cascade. Cross-linked fibrin

forms a biopolymeric hydrogel matrix resembling biological

fibrin clots.44

An early in vitro study by Bensaid et al45 indicated that

fibrin supports the adherence, proliferation, and migration of

MSCs. Cell proliferation in the 3-dimensional fibrin scaffold

demonstrated an increased lag phase (9 vs 3 days), but a de-

creased doubling time (54 vs 84 hours) when compared with

MSCs in 2-dimensional culture on plastic. Analysis of prolife-

ration at varying concentrations of fibrinogen and thrombin

showed that MSCs proliferated only when the concentration

of fibrinogenwas no greater than 18mg/mL.45 Subsequent work

by Catelas et al46 supported this finding but also demonstrated

that such conditions inhibit cell differentiation. Interestingly,

it has been consistently shown that thrombin concentration

has a negligible effect on MSC proliferation, even though it is

a known mitogen.47

Fibrinogen concentration may affect cell proliferation and

viability by altering both the extracellular microstructural and

biochemical environments. Higher concentrations of fibrinogen

result in a more densely cross-linked scaffold that impedes cell

spreading intrinsic to proliferation.48 Fibrin’s affinity for fibro-

nectin, a circulating ECM glycoprotein to which cells adhere,

provides the cell-matrix interactions that are critical for their

viability.44,49 Fibrin also plays a role in facilitating cell migration

by supporting the emigration from the implanted scaffold to the

surrounding tissue. Both in vitro and in vivo studies indicate

that MSCs readily migrate out of a fibrin scaffold, particularly

in response to a nutrient or oxygen gradient.45,46

The results of investigationsbyFalangaet al23 supportedearlier

reports that fibrin promoted MSC viability and migration in vitro

and demonstrated that application of BM-MSCs in a fibrin

hydrogel spray improves wound healing in mice and humans.

Because the improvement was dose dependent (application of

more cells resulted in greater wound closure), the investigators

concluded that accelerated wound healing resulted from the

application of at least 1 � 106 cells/cm2. No adverse effects were

observed when this fibrin system was used to apply MSCs to

humanwounds. However, the authors were unable to show that

MSCs were engrafted when applied to human wounds, despite

demonstrated modest engraftment in mice.23

Increasing fibrinogen concentration results in a more rigid

fibrin gel structure with a longer degradation time.44 Cells

incorporated/dispersed within the fibrin gel can secrete plasmin

and matrix metalloproteinases (MMPs) that digest the cross-

linked fibrin, thereby promoting its degradation.50,51 Although

the effects that fibrin concentration exerts on cell proliferation,

differentiation,migration, and viability have been demonstrated,

the influence of cell encapsulation on delivery system properties

has not been fully characterized.

Table 2.

SUMMARY OF HUMAN CELL BEHAVIOR IN FIBRIN GELS

Reference
a

Model Cell Behavior Observations

Bensaid et al,
45 2003 In vitro Adherence 1. Low fibrinogen concentration promotes MSC proliferation

Spreading 2. MSCs have longer lag phase, but shorter doubling time, than in culture

Proliferation 3. MSC proliferation is accompanied by cell elongation/spreading

Bensaid et al,
45 2003 In vivo Migration 1. Implanted MSCs demonstrate robust migration to local tissue

Catelas et al,
46 2006 In vitro Viability 1. MSCs are viable in, and migrate through, a fibrin scaffold

Spreading 2. Low fibrinogen concentration promotes MSC proliferation and elongation

Proliferation 3. High fibrinogen concentration promotes MSC differentiation

Differentiation

Ho et al,
44 2006 In vitro Spreading 1. Low fibrinogen concentration promotes MSC proliferation

Proliferation 2. Thrombin concentration does clearly affect MSC proliferation

3. MSC proliferation is accompanied by cell elongation/spreading

Park et al,
64 2010 In vitro Spreading 1. Fibrin more strongly promotes MSC proliferation than collagen or HA

Proliferation 2. Fibrin promotes MSC differentiation when component of hydrogel

Differentiation 3. Fibrin can differentially impact cell morphology and ECM deposition

when in co-gel with other scaffolds (collagen, HA)
aAll studies used human MSCs cultured from bone marrow.

ADVANCES IN SKIN & WOUND CARE & VOL. 24 NO. 11 528 WWW.WOUNDCAREJOURNAL.COM

Copyright @ 201  Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.1



FUTURE DIRECTIONS

Extracellular Matrix
Components as MSC
Delivery Vehicles
The ECM is a heterogeneous net-

work of macromolecules that pro-

vides the mechanical and biochemical cues involved in

regulation of cell growth, proliferation, movement, and differ-

entiation.52 The ECMbinds cells, organizes them into tissue, and

provides their characteristic mechanical properties.38,52 Func-

tional ECM is a corequisite forwoundhealing because it provides

the adherence scaffold necessary for keratinocyte migration and

successful epithelialization.6 Given that ECM is the anatomical

niche for stemcells and that cell-ECM interactions play a key role

in regulating cellular activity, its components have been studied

for their potential as delivery systems.21 The ECM macromole-

cules under investigation include collagen, elastin, glycosami-

noglycans (GAGs), and adhesion components.

Collagen is an attractive vehicle for MSC delivery, as it is the

predominant ECM component52 and is proangiogenic.53 In ad-

dition, its mechanical stiffness confers the functional rigidity

necessary to reconstitute tissue deficits.21 Collagen-based ve-

hicles have been successfully used for differentiation of MSCs

to chondrocytes for cartilage regeneration.54–56 More recently,

Wang et al57 synthesized collagen-containing hydrogels to

which MSCs adhered, enabling their proliferation and multi-

potent differentiation in vitro.57 Another type of MSC, adipose-

derived stem cells (ADSCs), accelerated repair of mouse wounds

when applied in a collagen gel.22,36,58 Furthermore, the abun-

dance of endogenous collagenase means the scaffold is bio-

degradable and will yield to the angiogenic processes that

proceed during wound healing.56,59 However, using collagen for

delivering MSCs to wounds raises a number of technical and

logistical problems. Soluble collagen that could suspend MSCs

and conform to the shape of a wound is very costly and thus

rarely used. Furthermore, soluble collagen is less rigid60 and

must undergo a caustic cross-linking reaction,61 which may

impede the biochemical processes involved in wound healing.

Hyaluronic acid (HA) is one of the GAGs found in the ECM

that can be extensively hydrated and serves to absorb large

compressive loads. Hyaluronic acid is nontoxic, and its reten-

tion of large amounts of water makes it a particularly effective

facilitator of cell migration.62 The demonstration that culture of

ADSCs in HA results in collagen deposition, cell engraftment,

and angiogenesis63 suggests that HA has the potential to be

formulated into an effective delivery system. However, further

studies are needed to determine the extent to which the pro-

teoglycan facilitates MSC proliferation, as 2 recent investi-

gations of ADSC proliferation in

vitro yielded conflicting re-

sults.63,64 Moreover, the resulting

cell population expressed signifi-

cantly more CD44 and CD105

than those cultured in collagen

or fibrin, as described above,

suggesting that they were less differentiated.64 The finding that

HA putatively inhibits MSC differentiation reinforces the need

for a defined mechanism of MSC-promoted wound repair; it is

possible that HA’s preclusion of differentiation will have no

bearing on its therapeutic potential as a delivery system.

Lastly, an ECM-like material is commonly used to mimic the

basement membrane in tissue culture. Although not identical

to the heterogeneous and dynamic in vivo ECM, the basement

membrane matrix gel contains many of the same components,

enabling its complex interaction with cells.65,66 Importantly,

application of MSCs to wounds in a basement membrane ma-

trix gel scaffold in conjunction with subcutaneous injection of

MSCs suspended in phosphate-buffered saline resulted in

accelerated wound closure.10,31 However, there is a paucity of

literature to rigorously evaluate the mechanistic aspects of a

basement membrane matrix gel as a stem cell delivery system.

Synthetic and Semisynthetic Delivery Vehicles
Theoretically, synthetic polymers are an ideal alternative MSC

delivery system because they can be custom designed with

properties optimal for MSC delivery. In addition, they can be

manufactured in industrial quantities with great consistency.38

Polyethylene glycol has been considered for MSC encapsula-

tion because it is porous, immunogenically nonreactive, and

able to absorb large amounts of water, and its cross-linking

density can be easily controlled.38,67

The major limitation of MSC encapsulation within synthetic

materials is the cells’ tendency to undergo anoikis (apoptosis

resulting from lack of cell-ECM interactions), representing a

major drawback on cell viability and therapeutic potential.68–71

As described earlier, cell-ECM interactions initiate many of the

biochemical events responsible for functions related to cell

proliferation, differentiation, and migration.72,73 Although these

commercially available materials have been used to deliver

other human cells,74 they are less successful with MSCs because

they lack a domain to which the adherence-dependent MSCs

can attach. Degradation of the synthetic polymers is another

challenge; disintegration rate is a static intrinsic property of

fabricated gels, whereas ECM component degradation is subject

to the needs of local cells.38

To address the challenge of MSC-synthetic hydrogel at-

tachment, investigators are attempting to incorporate adhesive

To address the challenge of MSC-synthetic

hydrogel attachment, investigators are attempting

to incorporate adhesive components into the

network, particularly those from ECM.
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components into the network, particularly those from the ECM.

Cell attachment to ECM adhesive components is principally

mediated by integrins (transmembrane heterodimeric surface

receptors), which play a major role in cell survival and mi-

gration.75 Fibronectin, as described above, is one such adhesive

component that has been integrated into synthetic gels to main-

tain cell survival.69,76,77 Karoubi et al68 demonstrated that im-

mobilization of fibronectin and fibrinogen in an agarose gel

capsule aids human MSCs in evading anoikis and increases cell

engraftment in vivo. However, the incorporation of large pro-

teins into commercially available hydrogels like PEG can alter the

structure and mechanics of the gel and may distribute non-

uniformly throughout the network.21

Accordingly, researchers looked to include only the adhe-

sive domains (small polypeptides) of the large ECM proteins,

such that they might be less disruptive to the polymer and more

homogeneously distributed. Indeed, incorporation of the RGD

tripeptide (arginine-glycine-aspartate), the major adhesive do-

main on fibronectin, promoted fibroblast attachment and pro-

liferation. In addition, RGD inclusion did not impede gelation,

swelling, or other measurable mechanical properties.78

Ideally, a synthetic MSC hydrogel scaffold would break down

as resident cells proliferate and begin to deposit their own ECM.

This nascent ECM is subject to remodeling by cell surface MMPs

and other proteases that cleave their substrates at specific target

motifs. Researchers have begun to incorporate these target

domains into PEG hydrogels to render the synthetic scaffold

biodegradable. These cleavage sites have been identified from a

variety of ECMcomponents, including type I collagen,79,80 type II

collagen,81 and fibronectin.67,82

CONCLUSION
Preclinical studies suggest that BM-MSCs represent an effective

and safe therapeutic strategy in the treatment of nonhealing

wounds. Significant investigation remains to be undertaken to

(1) define the mechanism by which these cells induce repair

and (2) determine the medium in which stem cells should be

delivered to achieve optimal therapy.

Currently, fibrin sealants possess many of the attributes that

constitute the ideal stem cell delivery system. Its commercial

availability and frequent use are additional advantages. How-

ever, fibrin sealants have not been compared with other po-

tential stem cell delivery systems in preclinical or clinical

study. Therefore, it remains to be elucidated which delivery

system will prove to be the most efficient and cost-effective

modality. Although MSCs are able to interact biochemically

with ECM components such as collagen and HA, it has not yet

been shown that either constituent can functionally replace

the diversity and complexity of the endogenous ECM. Al-

ternatively, synthetic hydrogels promise custom-designed

structural properties and physical consistency, but significant

provisions must be made to ensure their support of cell via-

bility and function.

Although the current data suggest that delivery vehicles can

facilitate MSCs’ therapeutic efficacy in chronic wounds, further

exploration is needed. This discussion emphasized the bio-

chemical and microstructural properties of various materials

that influence cell behavior. However, the extent to which each

of these criteria should be maximized to attain optimal therapy

for nonhealing wounds can be derived only from future clini-

cal studies.&
PRACTICE PEARLS

& Mesenchymal stem cells are pluripotent, self-renewing,

fibroblast-like cells with an ability to differentiate into

osteoblasts, adipocytes, and chondroblasts.

& Mesenchymal stem cells have been shown in both preclinical

and clinical investigations as a promising therapy to promote

healing of chronic nonhealing wounds.

& The 2 primary mechanisms by which mesenchymal stem cells

promote wound healing appear to be through differentiation into

resident cells and stimulation of regenerative paracrine signaling.

& The ideal delivery system for mesenchymal stem cells has yet to

be developed; however, a vehicle that serves as a functional

extracellular matrix is achievable, especially through formulating

it as hydrogels.

& Synthetic hydrogels are promising delivery vehicle under

development as they can be modified with components

of the extracellular matrix to enhance mesenchymal stem cell

performance.
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